
Math 255A Lecture 16 Notes

Daniel Raban

November 2, 2018

1 Compact Operators and Riesz’s Theorem

1.1 Compact operators

Last time, we said that a map T : B1 → B2 is compact if given ‖xn‖ ≤ 1, then (Txn)n∈N
has a convergent subsequence.

Example 1.1. Let B1 = C1([0, 1]) with ‖f‖B1 = ‖f‖L∞ + ‖f ′‖L∞ and B2 = C([0, 1]) eith
‖f‖B2 = ‖f‖L∞ . Then the inclusion map B1 → B2 is compact by Ascoli’s theorem.

Example 1.2. Let k ∈ C([0, 1] × [0, 1]), and consider Kf(x) =
∫ 1

0 k(x, y)f(y) dy. Then
K : L2((0, 1))→ L2((0, 1)) is compact by Ascoli’s theorem.

Proposition 1.1. Compact operators have the following properties:

1. The space LC(B1, B2) of compact linear maps B1 → B2 is a closed subspace of
L(B1, B2).

2. Compact operators form an ideal: if T1 ∈ L(B1, B2), T2 ∈ L(B2, B3), and either T1

or T2 is compact, then T2T2 ∈ LC(B1, B3).

3. If T ∈ L(B1, B2) has finite rank (dim(im(T )) <∞), then T is compact.

Proof. We prove the properties one at a time:

1. T is compact ⇐⇒ T ({‖x‖ ≤ 1}) compact ⇐⇒ T ({‖x‖ ≤ 1}) is complete and
totally bounded ⇐⇒ T ({‖x‖ ≤ 1}) is totally bounded. Let Tn ∈ LC(B1, B2)
be such that Tn → T in L(B1, B2). Let ε > 0 be given, and let N be such that
‖T − TN‖ < ε/2. Then, since TN ({‖x‖ ≤ 1}) is totally bounded, TN ({‖x‖ ≤ 1}) ⊆⋃

j∈I finite B(xj , ε/2). We get that T ({‖x‖ ≤ 1}) ⊆
⋃

j∈I B(xj , ε/2), so T is compact.

2. This property is clear.

3. We have a factorization T : B1 → B1/ ker(T )→ B2 given by x 7→ x + ker(T ) 7→ Tx.
The space B1/ ker(T ) ∼= im(T ) is finite dimensional, and since the identity operator
ina finite dimensional space is compact, we get that T is compact.
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1.2 Riesz’s Theorem

Theorem 1.1 (F. Riesz). If the identity map on the Banach space B is compact, then B
is finite dimensional.

Remark 1.1. This is clear if B is a Hilbert space; consider an orthonormal basis.

Lemma 1.1. Let B1 ( B be a proper, closed subspace. Then for every ε > 0, there exists
x ∈ B such that ‖x‖ = 1, and dist(x,B1) = infy∈B1 ‖x− y‖ ≥ 1− ε.

Proof. Let x ∈ B\B1, and let d = dist(z,B1) > 0. Let x1 ∈ B1 be such that d ≤ ‖z−x1‖ <
d/(1− ε). We can take x = (z−1)/‖z − x1‖. For any y ∈ B1, we have

‖x− y‖ = z − x1 − y‖z − x1‖‖
‖z − x1‖

≥ d

‖z − x1‖
> 1− ε.

Now we can prove Riesz’s theorem.

Proof. If B is infinite-dimensional, there exists a strictly increasing sequence B1 ( B2 (
· · · of finite dimensional subspaces of B. Using the lemma, we find xj ∈ Bj such that
dist(xj , Bj−1) ≥ 1/2. In particular, ‖xj − xk‖ ≥ 1/2 for k < j, so (xj) has no convergent
subsequence.

Theorem 1.2 (Fredholm-Riesz). Let B be a Banach space, and let T ∈ LC(B,B). Then
I − T is Fredholm, and ind(I − T ) = 0.

Before we prove this, let’s prove a proposition.

Proposition 1.2. Let T ∈ LC(B,B). Then

1. dim(ker(I − T )) <∞.

2. im(T − T ) is closed.

Proof. This is a crucial observation to any proof of the Fredholm-Riesz theorem.

1. Let xn ∈ ker(I − T ) with ‖xn‖ ≤ 1. Then xn = Txn has a convergent subsequence.
By Riesz’s theorem, dim(ker(I − T )) <∞.

2. Let y ∈ im(I − T ) and let xn ∈ B be such that yn = (1 − T )xn → y. Consider
dist(xn, ker(I − T )). This equals ‖xn − zn‖ for some zn ∈ ker(I − T ) because y 7→
‖xn−y‖ is continuous and goes to∞ as y →∞. We have that yn = (I−T )(xn−zn) =
xn − zn − T (xn − zn).

We claim that (xn − zn) is a bounded sequence. Otherwise, we can assume that
‖xn → zn‖ → ∞. Let wn = (xn − zn)/‖xn − zn‖. Then ‖wn‖ = 1, and (I − T )wn =
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yn/‖xn − zn‖ → 0 as (yn) converges. Passing to a subsequence, we may assume that
Twn → v ∈ B, so wn → V . So (I − T )v = 0. On the other hand,

dist(wn, ker(I − T )) =
dist(xn, ker(I − T ))

‖xn − zn‖
,

so dist(v, ker(I−T )) ≤ 1, and we get the claim. We will finish the proof next time.
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