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Compact Operators and Riesz’s Theorem

Compact operators

Last time, we said that a map T : By — By is compact if given ||z,| < 1, then (T'zy)nen
has a convergent subsequence.

Example 1.1. Let By = C1([0,1]) with || f|lB, = ||fllz + || f'||z and By = C(]0,1]) eith
I/ IB, = || fllzee. Then the inclusion map By — Bs is compact by Ascoli’s theorem.

Example 1.2. Let & € C([0,1] x [0,1]), and consider K f(x) = fol E(x,y)f(y)dy. Then
K : L?((0,1)) — L?((0,1)) is compact by Ascoli’s theorem.

Proposition 1.1. Compact operators have the following properties:

1.

3.

The space Lo(By, Ba) of compact linear maps By — Bo is a closed subspace of
L(B1, Bs).

Compact operators form an ideal: if Ty € L(B1, Bs), T € L(Bs, Bs), and either Ty
or Ty is compact, then ToTy € Lo(By, Bs).

If T € L(Bi1, B2) has finite rank (dim(im(7")) < oo), then T is compact.

Proof. We prove the properties one at a time:

1.

T is compact <= T({||z|| < 1}) compact <= T'({||z]| <1}) is complete and
totally bounded <= T'({||z]| < 1}) is totally bounded. Let T,, € Lo (B, B2)
be such that T, — T in L£(Bj,Bz). Let ¢ > 0 be given, and let N be such that
T — Tn|| < e/2. Then, since Tn({||z]| < 1}) is totally bounded, T ({||z| < 1}) C
Ujer finite B(7.6/2). We get that T({||z|| < 1}) € U,;¢; B(xj,/2), so T' is compact.

. This property is clear.

We have a factorization T': By — B;/ker(T') — Bs given by = — x + ker(T) — Tx.
The space B/ ker(T') = im(7T) is finite dimensional, and since the identity operator
ina finite dimensional space is compact, we get that 1" is compact. O



1.2 Riesz’s Theorem

Theorem 1.1 (F. Riesz). If the identity map on the Banach space B is compact, then B
1s finite dimensional.

Remark 1.1. This is clear if B is a Hilbert space; consider an orthonormal basis.

Lemma 1.1. Let By C B be a proper, closed subspace. Then for every € > 0, there exists
x € B such that ||z|| = 1, and dist(z, By) = infyep, || —y|| > 1 —¢.

Proof. Let x € B\ By, and let d = dist(z, B1) > 0. Let 21 € By be such that d < ||[z—z| <
d/(1 —¢€). We can take x = (2—1)/||z — z1]|. For any y € B1, we have

e —yll = 2z = 21 — yllz — @l d

> >1—c. ]
|2 = 21| Iz — 21|

Now we can prove Riesz’s theorem.

Proof. If B is infinite-dimensional, there exists a strictly increasing sequence By C By C

= =

- of finite dimensional subspaces of B. Using the lemma, we find z; € B; such that
dist(x;, Bj—1) > 1/2. In particular, ||x; — x| > 1/2 for k < j, so (x;) has no convergent
subsequence. ]

Theorem 1.2 (Fredholm-Riesz). Let B be a Banach space, and let T € Lo(B, B). Then
I —T is Fredholm, and ind(I —T) = 0.

Before we prove this, let’s prove a proposition.
Proposition 1.2. Let T € Lo(B, B). Then
1. dim(ker(I — T)) < oo.
2. im(T —T) is closed.
Proof. This is a crucial observation to any proof of the Fredholm-Riesz theorem.

1. Let @y, € ker(I — T) with ||z,|| < 1. Then z, = Tz, has a convergent subsequence.
By Riesz’s theorem, dim(ker(/ — 7)) < oo.

2. Let y € im(I —7T) and let =, € B be such that y, = (1 — T)z, — y. Consider
dist(xy,, ker(I — T')). This equals ||x,, — 2zy| for some z, € ker(I —T') because y —
||zr, —y|| is continuous and goes to co as y — co. We have that y, = (I=T)(x,—2p) =
Ty, — 2n — T (@0, — 2n).

We claim that (z, — z,) is a bounded sequence. Otherwise, we can assume that
|xn — 2zn|| = 00. Let wy, = (2 — 2n)/||xn — 2n||. Then ||w,| =1, and (I — T)w, =



Yn/||Tn — zn|| = 0 as (yn) converges. Passing to a subsequence, we may assume that
Tw, - v € B,so w, — V. So (I —T)v=0. On the other hand,

i ker(] — T
dist(wn, ker(I — T)) = dlSt('ﬁZj iri H ).

so dist(v, ker(I—T7")) < 1, and we get the claim. We will finish the proof next time. [
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