Math 255A Lecture 16 Notes

Daniel Raban

November 2, 2018

1 Compact Operators and Riesz's Theorem

1.1 Compact operators

Last time, we said that a map $T: B_1 \to B_2$ is compact if given $||x_n|| \leq 1$, then $(Tx_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Example 1.1. Let $B_1 = C^1([0,1])$ with $||f||_{B_1} = ||f||_{L^{\infty}} + ||f'||_{L^{\infty}}$ and $B_2 = C([0,1])$ eith $||f||_{B_2} = ||f||_{L^{\infty}}$. Then the inclusion map $B_1 \to B_2$ is compact by Ascoli's theorem.

Example 1.2. Let $k \in C([0,1] \times [0,1])$, and consider $Kf(x) = \int_0^1 k(x,y)f(y) dy$. Then $K: L^2((0,1)) \to L^2((0,1))$ is compact by Ascoli's theorem.

Proposition 1.1. Compact operators have the following properties:

- 1. The space $\mathcal{L}_C(B_1, B_2)$ of compact linear maps $B_1 \to B_2$ is a closed subspace of $\mathcal{L}(B_1, B_2)$.
- 2. Compact operators form an ideal: if $T_1 \in \mathcal{L}(B_1, B_2)$, $T_2 \in \mathcal{L}(B_2, B_3)$, and either T_1 or T_2 is compact, then $T_2T_2 \in \mathcal{L}_C(B_1, B_3)$.
- 3. If $T \in \mathcal{L}(B_1, B_2)$ has finite rank $(\dim(\operatorname{im}(T)) < \infty)$, then T is compact.

Proof. We prove the properties one at a time:

- 1. T is compact $\iff T(\{\|x\| \le 1\})$ compact $\iff T(\{\|x\| \le 1\})$ is complete and totally bounded $\iff T(\{\|x\| \le 1\})$ is totally bounded. Let $T_n \in \mathcal{L}_C(B_1, B_2)$ be such that $T_n \to T$ in $\mathcal{L}(B_1, B_2)$. Let $\varepsilon > 0$ be given, and let N be such that $\|T - T_N\| < \varepsilon/2$. Then, since $T_N(\{\|x\| \le 1\})$ is totally bounded, $T_N(\{\|x\| \le 1\}) \subseteq \bigcup_{j \in I \text{ finite }} B(x_j, \varepsilon/2)$. We get that $T(\{\|x\| \le 1\}) \subseteq \bigcup_{j \in I} B(x_j, \varepsilon/2)$, so T is compact.
- 2. This property is clear.
- 3. We have a factorization $T: B_1 \to B_1/\ker(T) \to B_2$ given by $x \mapsto x + \ker(T) \mapsto Tx$. The space $B_1/\ker(T) \cong \operatorname{im}(T)$ is finite dimensional, and since the identity operator ina finite dimensional space is compact, we get that T is compact. \Box

1.2 Riesz's Theorem

Theorem 1.1 (F. Riesz). If the identity map on the Banach space B is compact, then B is finite dimensional.

Remark 1.1. This is clear if *B* is a Hilbert space; consider an orthonormal basis.

Lemma 1.1. Let $B_1 \subsetneq B$ be a proper, closed subspace. Then for every $\varepsilon > 0$, there exists $x \in B$ such that ||x|| = 1, and $\operatorname{dist}(x, B_1) = \inf_{y \in B_1} ||x - y|| \ge 1 - \varepsilon$.

Proof. Let $x \in B \setminus B_1$, and let $d = \text{dist}(z, B_1) > 0$. Let $x_1 \in B_1$ be such that $d \leq ||z - x_1|| < d/(1 - \varepsilon)$. We can take $x = (z - 1)/||z - x_1||$. For any $y \in B_1$, we have

$$\frac{\|x-y\| = z - x_1 - y\|z - x_1\|\|}{\|z - x_1\|} \ge \frac{d}{\|z - x_1\|} \ge 1 - \varepsilon.$$

Now we can prove Riesz's theorem.

Proof. If B is infinite-dimensional, there exists a strictly increasing sequence $B_1 \subsetneq B_2 \subsetneq \cdots$ of finite dimensional subspaces of B. Using the lemma, we find $x_j \in B_j$ such that $\operatorname{dist}(x_j, B_{j-1}) \ge 1/2$. In particular, $||x_j - x_k|| \ge 1/2$ for k < j, so (x_j) has no convergent subsequence.

Theorem 1.2 (Fredholm-Riesz). Let B be a Banach space, and let $T \in \mathcal{L}_C(B, B)$. Then I - T is Fredholm, and $\operatorname{ind}(I - T) = 0$.

Before we prove this, let's prove a proposition.

Proposition 1.2. Let $T \in \mathcal{L}_C(B, B)$. Then

- 1. dim $(\ker(I-T)) < \infty$.
- 2. $\operatorname{im}(T-T)$ is closed.

Proof. This is a crucial observation to any proof of the Fredholm-Riesz theorem.

- 1. Let $x_n \in \ker(I T)$ with $||x_n|| \le 1$. Then $x_n = Tx_n$ has a convergent subsequence. By Riesz's theorem, $\dim(\ker(I - T)) < \infty$.
- 2. Let $y \in \overline{\mathrm{im}(I-T)}$ and let $x_n \in B$ be such that $y_n = (1-T)x_n \to y$. Consider $\operatorname{dist}(x_n, \operatorname{ker}(I-T))$. This equals $||x_n z_n||$ for some $z_n \in \operatorname{ker}(I-T)$ because $y \mapsto ||x_n y||$ is continuous and goes to ∞ as $y \to \infty$. We have that $y_n = (I-T)(x_n z_n) = x_n z_n T(x_n z_n)$.

We claim that $(x_n - z_n)$ is a bounded sequence. Otherwise, we can assume that $||x_n \to z_n|| \to \infty$. Let $w_n = (x_n - z_n)/||x_n - z_n||$. Then $||w_n|| = 1$, and $(I - T)w_n =$

 $y_n/||x_n - z_n|| \to 0$ as (y_n) converges. Passing to a subsequence, we may assume that $Tw_n \to v \in B$, so $w_n \to V$. So (I - T)v = 0. On the other hand,

$$\operatorname{dist}(w_n, \operatorname{ker}(I-T)) = \frac{\operatorname{dist}(x_n, \operatorname{ker}(I-T))}{\|x_n - z_n\|},$$

so dist $(v, \ker(I-T)) \leq 1$, and we get the claim. We will finish the proof next time. \Box